
Flocking

Colin Clark
Inclusive Design Research Centre,

OCAD University

creative audio synthesis for the web

• Audio synthesis framework written entirely
in JavaScript	

• Inspired by SuperCollider, but increasingly
different	

• Very open: dual MIT/GPL license

flockingjs.org

github.com/colinbdclark/flocking

• Explosion of devices and platforms	

• Prevalence of “walled garden” computer
music environments	

• Challenge of building polished user
interfaces and sharing them

Context and Motivations

vs.

1. Inter-environment messaging (e.g. Open
Sound Control, SuperCollider server)	

2. Code generators/compilers (e.g. Faust)	

3. Cross-language APIs (e.g. Max’s Patcher API
for Java and JavaScript)	

4. Macros and metaprogramming (e.g. Lisp,
Extempore)

Approaches to Interoperability

Source code

Developer

Executable

User
Compiler

World of Compiled Code

The Unidirectionality of Compilers

Clark, C. , A. Basman, S. Bates, and K.G. Markus,	

“Enabling Architecture: How the GPII Supports Inclusive Software Development”	

in Proceedings of the HCII, 2014

Preserves sufficient semantics and landmarks so
that a computer music artifact can be inspected,
overridden, and extended by humans, graphical
tools and generative algorithms not only at
creation time but throughout the process of being
used and maintained.

Bi-directional Interoperability

Configuration

Developer 1

Configuration

User 1

Aggregation/Merging

Configuration

Configuration

Developer 2

Developer 3

Configuration

Integrator 1

Configuration

Plugin author 1

Configuration

Integrator 2 To
User n

Goal: Bi-directionality

Clark, C. , A. Basman, S. Bates, and K.G. Markus,	

“Enabling Architecture: How the GPII Supports Inclusive Software Development”	

in Proceedings of the HCII, 2014

“Lisp has no syntax… You write code in parse
trees… [that] are fully accessible to your
programs. You can write programs that
manipulate them… programs that write
programs.”	

!

Paul Graham, Beating the Averages, http://paulgraham.com/avg.html (2001)

Declarative Programming

• You write data, not code to design an
instrument or define a score	

• Unit generators provide a consistent
abstraction for operations on signals	

• Synthesis graphs are built up by declaring trees
of named unit generators

Flocking is Declarative

Programming in JSON
JavaScript Object Notation, a standard format for data
exchange on the web.

{
 “key”: "value",
 “meaning”: 42.42,
 “isLoud”: true
}

[“tenney”, “risset”, “schmickler”]

{
 "synthDef": {
 "ugen": "flock.ugen.granulator",
 "numGrains": {
 "ugen": "flock.ugen.line",
 "start": 1,
 "end": 40,
 "duration": 20
 },
 "grainDur": {
 "ugen": "flock.ugen.line",
 "start": 0.1,
 "end": 0.005,
 "duration": 100
 },  

How it Works

• Framework: parses, traverses and instantiates
synths, unit generators, and buffers from JSON	

• Environment: overall audio system with
pluggable back-ends	

• Unit generators: familiar sample-generating
primitives	

• Synths: named collections of signal generators	

• Scheduler: schedules value synths in time

Primary Components

Synth

UGen

UGen

UGen

Synth

UGen

UGen

EnviroAudio
strategy

Script
Processor
Node

Flocking

Web Audio API

Scheduler

connected to

User
Input

{
 ugen: "flock.ugen.sinOsc",
 freq: 440,
 mul: 0.25
}

Unit Generators

{
 ugen: "flock.ugen.sinOsc",
 freq: 440,
 mul: 0.25
}

Global Names

{
 ugen: "flock.ugen.sinOsc",
 freq: 440,
 mul: 0.25
}

Inputs

{
 ugen: "flock.ugen.sinOsc",
 rate: "control",
 freq: 440,
 mul: 0.25
}

Rates

{
 id: "carrier",
 ugen: "flock.ugen.sinOsc",
 rate: "control",
 freq: 440,
 mul: 0.25
}

Named unit generators

amSynth.set({
 "carrier.freq": 440,
 "modulator.mul": {
 "ugen": "flock.ugen.line",
 "start": 0.25,
 "end": 0.0,
 "duration": 2.0
 },
 "modulator.add": 0.0
});

Change Specifications

{
 "type": "flock.scheduler.async",
 "options": {
 "components": {
 "synthContext": "{amSynth}"
 },
 "score": [
 {
 "interval": "repeat",
 "time": 1.0,
 "change": {
 "values": {
 "carrier.freq": {
 "synthDef": {
 "ugen": "flock.ugen.sequence",
 "list": [330, 440, 550, 660, 880, 990]
 }
 }
 }
 }
 }
]
 }
} Scheduling Changes

The Scheduler

Value
Synth

Async
Scheduler

ugen

ugen ugen

Clock Target
Synth

evaluates updatesinvokes

generates a value

"quneo": {
 "type": "flock.midi.controller",
 "options": {
 "components": {
 "synthContext": "{amSynth}"
 },
 "controlMap": {
 "0": {
 "input": “carrier.freq",
 "transform": {
 "mul": 10,
 "add": 120
 }
 },
 "1": {
 "input": "carrier.mul",
 "transform": {
 "mul": 0.00787
 }
 }
 }
 }
}

Binding MIDI

"quneo": {
 "type": "flock.midi.controller",
 "options": {
 "components": {
 "synthContext": "{amSynth}"
 },
 "controlMap": {
 "0": {
 "input": “carrier.freq",
 "transform": {
 "mul": 10,
 "add": 120
 }
 },
 "1": {
 "input": "carrier.mul",
 "transform": {
 "mul": 0.00787
 }
 }
 }
 }
}

Binding MIDI

"quneo": {
 "type": "flock.midi.controller",
 "options": {
 "components": {
 "synthContext": "{amSynth}"
 },
 "controlMap": {
 "0": {
 "input": “carrier.freq",
 "transform": {
 "ugen": “flock.ugen.value”,
 "mul": 10,
 "add": 120
 }
 },
 "1": {
 "input": "carrier.mul",
 "transform": {
 "mul": 0.00787
 }
 }
 }
 }

Binding MIDI

Tenney, James. “Computer Music Experiences, 1961-1964” in Electronic Music Reports (1), 23-60, 1969.

• JSON specifications are interpreted and
instantiated into components by a framework
(Flocking and Fluid Infusion)	

• Reuse by merging: A document can be overlaid
on top of another, adding, changing, or eliding
values	

• State, event bindings, and behaviour are all
configurable

Document Oriented Programming

fluid.defaults("colin.amSynth", {
 gradeNames: ["flock.synth"],
 synthDef: {
 ugen: "flock.ugen.sinOsc",
 freq: 440,
 mul: {
 ugen: "flock.ugen.triOsc",
 freq: 5,
 mul: 0.25,
 add: 0.25
 }
 }
});

Names as Landmarks

fluid.defaults("your.betterAMSynth", {
 gradeNames: [“colin.amSynth”],
 synthDef: {
 mul: {
 ugen: "flock.ugen.sinOsc"
 }
 }
});

Extension by Overlay

Principle of Least Power:	

“Nowadays we have to appreciate the reasons for picking
not the most powerful solution but the least powerful. The
reason for this is that the less powerful the language, the
more you can do with the data stored in that language. If
you write it in a simple declarative form, anyone can write
a program to analyze it in many ways.”	

!

Tim Berners-Lee, Axioms of Web Architecture, 1998	

http://www.w3.org/DesignIssues/Principles.html#PLP

http://www.w3.org/DesignIssues/Principles.html#PLP

Web Audio: Challenges

• A lot of myths out there about JavaScript	

• Browser wars mean JS is now the fastest
dynamic language today (JIT compilation)	

• In “The Web Browser As Synthesizer And
Interface” (NIME 2013), Roberts et al use
micro benchmarks and complex code
generation scheme in Gibberish	

• But JIT compilers thrive on hot, type stable
code!

Performance

• Keep it simple: Flocking stores unit generators
in an ordered list; on each tick, iterate and
evaluate	

• Called 700x per second (in 64 sample blocks),
this represents a hot, stable path for JIT
compilation	

• Avoid premature optimization

Flocking’s Approach

Comparative Benchmarks

4.07%

18.47%

6.83%

24.16%

7%

15%

4.29%

21.06%

7.6%

27.32%

7.63%

17.04%

10.02%

45.68%

13.38%

56.09%

15%

29%

0%

10%

20%

30%

40%

50%

60%

Flocking%
(Firefox)%

Gibberish%
(Firefox)%%

Flocking%
(Chrome)%

Gibberish%
(Chrome)%%

Flocking%
(Safari)%

Gibberish%
(Safari)%%

m
s#

Minimum% Average% Maximum%

Gibberish Amplitude modulation demo. Smaller bars are faster.

• Making architectural trade-offs for
performance optimization prematurely is a risk	

• Stable, invariant code will be compiled. Don’t
spill the JIT’s cache with eval() or type changes.	

• Avoid generating garbage wherever possible	

• Use a block-based architecture

Performance Findings

Future R&D

Live Data Merging

Questions?

Colin Clark
Inclusive Design Research Centre,	

OCAD University, Toronto	

!
e: cclark@ocadu.ca	

t: @colinbdclark

flockingjs.org	

github.com/colinbdclark/flocking

mailto:cclark@ocad.ca

